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We consider the two-dimensional inviscid flow that occurs when a fluid, initially at
rest around a slender wedge-shaped void, is allowed to recoil under the action of
surface tension. As noted by Keller & Miksis (1983), a similarity scaling is available,
with lengths scaling like t2/3. We find that an asymptotic balance is possible when the
wedge semi-angle, α, is small, in an inner region of O(α4/9), a distance of O(α−2/9)
from the origin, which leads to a simpler boundary value problem at leading order.
Although we are able to reformulate the inner problem in terms of a complex potential
and reduce it to a single nonlinear integral equation, we are unable to find a solution
numerically. This is because, as noted by Vanden-Broeck, Keller & Milewski (2000),
and reproduced here numerically using a boundary integral method, the free surface
is self-intersecting for α < α0 ≈ 2.87◦. Since disconnected solutions are only possible
when there is a void inside the initial wedge, we consider the effect of an inviscid
low-density fluid inside the wedge. In this case, a solution is available for a slightly
smaller range of wedge semi-angles, since the flow of the interior fluid sucks the free
surfaces together, with the exterior flow seeing pinch-off at a finite angle.

We conclude that for α < α0, we must introduce the effect of viscosity at small
times in order to regularize the initial value problem. Since the solution for t � 1 in
the presence of viscosity is simply connected (Billingham 2005), the free surface must
first pinch off at some finite time and then continue to do so at a sequence of later
times. We investigate this using boundary integral solutions of the full inviscid initial
value problem, with smooth initial conditions close to those of the original problem.
In addition, we show that the inner asymptotic scalings that we developed for the
steady problem can also be used in this time-dependent problem. The unsteady inner
equations reduce to those for steady unidirectional flow outside a region of constant
pressure, and can be solved numerically.

We also show how the slender wedge solution can be related to the small-time
behaviour of two coalescing drops, and describe the relationship between our solutions
and those found by Duchemin, Eggers & Josserand (2003), for which a similar
unsteady inner region exists. In each case, the free surface pinches off repeatedly, and
no similarity solution exists.

† Professor King died in January 2005.
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1. Introduction
Inviscid surface-tension-driven flow in a fluid wedge was first studied by Keller &

Miksis (1983), who noted that a similarity solution, with lengths scaling like t2/3,
is available. These scalings have since been used by many other authors to study
related problems, for example, Lawrie (1990), Lawrie & King (1991), King (1991),
Billingham & King (1995), King, Billingham & Popple (1999), Billingham (1999),
Decent & King (2001), Keller, Milewski & Vanden-Broeck (2000, 2002), Sierou &
Lister (2004). Such flows are relevant to situations where bodies of fluid rupture and
recoil under the action of surface tension. As we show below, we can also relate the
surface-tension-driven flow around a wedge to the behaviour of two coalescing liquid
spheres or cylinders (Duchemin, Eggers & Josserand 2003).

In this paper, we consider the flow of two immiscible fluids, initially lying in the
exterior and interior of a single wedge. We concentrate on the behaviour when the
interior fluid either has zero density or density much smaller than the exterior fluid,
and the wedge angle is small; a slender wedge. We begin in § 2 by defining the initial
value problem and determine the boundary value problem satisfied by the similarity
solution. In § 2.1, we construct asymptotic scalings for an inner and an outer solution,
valid when the wedge angle is small. We show that, although this structure is plausible,
no solution exists in the inner region. We show why this is the case in § 2.2, where
we solve the similarity problem numerically, and find that simply connected solutions
only exist for sufficiently large wedge angles. The free surface becomes self-intersecting
at small wedge angles because of the presence of large-amplitude capillary waves on
the free surface, and therefore a similarity solution cannot exist for arbitrarily small
wedge angles.

We consider the effect of an interior fluid with small, but non-zero, density in § 2.3.
We find that the flow of the exterior fluid is only affected close to the point where
a thin neck is formed in the interior fluid. However, we are again unable to find a
solution of the inner problem in the slender wedge limit. Numerical solutions of the
similarity problem show that there is still no solution for sufficiently small wedge
angles, again because of the presence of large-amplitude capillary waves of the free
surface. However, there is some numerical evidence that a similarity solution exists
for all wedge angles when the inner fluid is moderately dense compared to the outer
fluid.

In § 3, we further investigate the solution of the initial value problem for wedge
angles small enough that no similarity solution exists. Unsteady numerical solutions,
starting from smooth initial conditions, such as could emerge from the initial viscous-
dominated flow, show that the similarity solution is an attractor for the unsteady flow
when such a solution exists, but that otherwise the free surface pinches off a bubble in
finite time. We show that the asymptotic scalings that we developed for the similarity
problem can be used for the unsteady problem, after scaling time appropriately, in
§ 3.2. Numerical solutions of this unsteady inner problem are in good qualitative
agreement with solutions of the full unsteady problem.

Finally, in § 4, we show how the unsteady inner solutions we have developed can
be related to the inviscid coalescence of drops, as studied by Duchemin et al. (2003).
Specifically, we find that there is a one-parameter family of scalings appropriate to
an unsteady inner region, within which the free surface pinches off in finite time. The
appropriate parameter is determined by matching to an outer solution, with different
outer solutions appropriate for an initial wedge, the main subject of the present
paper, and an initially quadratic free surface, the subject of Duchemin et al. (2003)
as a model for the coalescence of two cylinders of fluid. It can be shown that this is
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Figure 1. The initial conditions.

equivalent to the coalescence of three-dimensional droplets. In both cases, this means
that there is no similarity solution; instead the free surface pinches off repeatedly.

2. Similarity solution of the initial value problem
We consider a two-dimensional flow involving two inviscid fluids, one of density ρ2

initially at rest lying inside a wedge of semi-angle α, surrounded by a fluid of density
ρ1, also initially at rest, as shown in figure 1. The x-axis is a line of symmetry, and we
will consider the region y � 0 only. We denote the domains occupied by fluids 1 and
2 by D1,2. A constant, uniform surface tension, σ , acts at the interface between the
two fluids, ∂D, and causes it to recoil for t > 0. Since the flow is initially irrotational,
it remains irrotational, and we can describe the flow in each fluid using velocity
potentials φ1,2, with the fluid velocities given by u1,2 = ∇φ1,2.

The potentials both satisfy Laplace’s equation

∇2φ1,2 = 0 in D1,2. (1)

If we describe the interface parametrically as R = (X(s, t), Y (s, t)), where s is arc-
length, then

X2
s + Y 2

s = 1, (2)

and we can write the dynamic boundary condition as

ρ1

(
φ1t + 1

2
|∇φ1|2

)
− ρ2

(
φ2t + 1

2
|∇φ2|2

)
= σκ ≡ σ (−YssXs + XssYs) on ∂D, (3)

where κ is the curvature. The kinematic condition is

Rt = n{n · ∇φ1(R, t)}, (4)

where n = (−Ys, Xs) is the unit normal pointing into D1. Continuity of normal velocity
requires that

n · ∇φ1(R, t) = n · ∇φ2(R, t). (5)
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Appropriate symmetry conditions are

Ys(0, t) = 1, Xs(0, t) = 0,

φy1(x, 0, t) = 0 for t > 0, x � X0(t),

φy2(x, 0, t) = 0 for t > 0, x � X0(t),


 (6)

and we define s so that Y (0, t) = 0 and X(0, t) ≡ X0(t). The inital conditions are

φ1,2 = 0 in D1,2, Y (s, 0) = s sin α, X(s, 0) = s cos α. (7)

In the far field

φ1,2 → 0 as x2 + y2 → ∞, Y − tan α X → 0 as s → ∞. (8)

There is no geometrical lengthscale in this problem, and the only dimensional
quantities involved are ρ1,2 and σ . As noted by Keller & Miksis (1983), we can
therefore define the independent similarity variables

x̄ =
ρ

1/3
1 x

σ 1/3t2/3
, ȳ =

ρ
1/3
1 y

σ 1/3t2/3
, s̄ =

ρ
1/3
1 s

σ 1/3t2/3
, (9)

and look for a solution of the form

φ̄1,2 =
ρ

2/3
1 φ1,2

σ 2/3t1/3
≡ φ̄1,2(x̄, ȳ), Ȳ =

ρ
1/3
1 Y

σ 1/3t2/3
≡ Ȳ (s̄), X̄ =

ρ
1/3
1 X

σ 1/3t2/3
≡ X̄(s̄). (10)

In terms of these similarity variables, the initial value problem (1) to (8) becomes the
boundary value problem

∇2φ̄1,2 = 0 in D1,2, (11)

X̄2
s̄ + Ȳ 2

s̄ = 1, (12)

1
3
φ̄1 − 2

3
R̄ · ∇φ̄1 + 1

2
|∇φ̄1|2 − ρ

{
1
3
φ̄2 − 2

3
R̄ · ∇φ̄2 + 1

2
|∇φ̄2|2

}
= −Ȳ s̄s̄ X̄s̄ + X̄s̄s̄ Ȳ s̄ on ∂D, (13)

2
3
n̄ · R̄ = n̄ · ∇φ̄1 = n̄ · ∇φ̄2 on ∂D, (14)

Ȳ s(0) = 1, X̄(0) = 0, φ̄ȳ1(x̄, 0) = 0 for x̄ � X̄0, φ̄ȳ2(x̄, 0) = 0 for x̄ � X̄0, (15)

φ̄1,2 → 0 as x̄2 + ȳ2 → ∞, Ȳ − tan α X̄ → 0 as s̄ → ∞, (16)

where ρ = ρ2/ρ1.
We shall begin by considering the case of a void in D2, so that ρ =0. To keep our

notation succinct, we write φ = φ̄1, D = D1, tan α = ε and omit the bars from the vari-
ables. We also write Φ(s) = φ(X(s), Y (s)) and use (14) to eliminate n · ∇φ(X(s), Y (s)) ≡
Φn(s) from (13), which gives

∇2φ = 0 in D, (17)

X′2 + Y ′2 = 1, (18)
1
3
Φ − 2

9
(n · R)2 − 2

3
(t · R)Φ ′ + 1

2
(Φ ′)2 = −Y ′′X′ + X′′Y ′, (19)

Φn = 2
3
n · R, (20)

Y ′(0) = 1, X′(0) = 0, (21)

φy(x, 0) = 0 for x < X0, (22)

φ → 0 as x2 + y2 → ∞, Y − εX → 0 as s → ∞, (23)
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where t = (X′, Y ′) is the unit tangent vector in the direction of increasing s and a
prime denotes d/ds.

2.1. The slender wedge limit, ε � 1

We begin by seeking an asymptotic solution of (17) to (23), valid when ε � 1; the
slender wedge limit. By looking for an asymptotic balance in the equations, we are led
to seek a solution in an outer region with x, y = O(ε−a), Y = O(ε1−a) and φ = O(ε1−2a).
By considering how the solution in this outer region behaves as x → X̄0ε

−a , where the
free surface meets the x-axis, we find that Ȳ =O((x̄ − X̄0)

−1/2) + O(ε3a(x̄ − X̄0)
−3/2) as

x̄ → X̄0, with x̄ = εax and Ȳ = εa−1Y . This suggests a non-uniformity when x̄ = X̄0 +
O(ε3a). In addition, the curvature is proportional to Ȳ x̄x̄(1 + ε2Ȳ 2

x̄)
−3/2, so that, in

order to obtain the full curvature term in an inner region, we need x̄ = X̄0 + O(ε2/3),
and hence a = 2/9. We will describe the solutions in the inner and outer regions using
a =2/9 from the outset.

2.1.1. Outer problem

Appropriate scaled variables for the outer region are

x = ε−2/9x̄, y = ε−2/9ȳ, X = ε−2/9X̄, Y = ε7/9Ȳ ,

s = ε−2/9s̄, φ = ε5/9φ̄, Φ = ε5/9φ̄, Φn = ε7/9φ̄n.

}
(24)

At leading order for ε � 1, (17) to (23) become

∇2φ̄ = 0 for ȳ > 0, (25)

X̄′2 = 1, (26)
1
3
Φ̄ − 2

3
X̄Φ̄ ′ = 0, (27)

Φ̄n = φ̄ȳ(x̄, 0) = 2
3
(X̄′Ȳ − Ȳ ′X̄) for x̄ > X̄0, (28)

φ̄ȳ(x̄, 0) = 0 for x̄ < X̄0, (29)

φ̄ → 0 as x̄2 + ȳ2 → ∞, Ȳ − X̄ → 0 as s → ∞. (30)

Note that the symmetry condition, (21), will be satisfied by the free surface in the
inner region, and that surface tension does not affect the flow at leading order in this
outer region.

Equation (26) shows that X̄ = X̄0 + s̄, after which we can solve (27) to give

Φ̄ = k
√

s̄ + X̄0 for some constant k. The far-field condition (30) then shows that
we need k = 0, and hence that, at leading order,

φ̄(x̄, 0) = 0 for x̄ > X̄0. (31)

The least singular solution of (25) that satisfies (29), (30) and (31) is

φ̄ = A
sin 1

2
θ

r̄1/2
, (32)

where (r̄ , θ) are polar coordinates with origin at x̄ = X̄0, ȳ =0 and A is a constant.
On substituting this expression into the kinematic condition, (28), we can solve for
the position of the free surface as

Ȳ = x̄ +
3

4
A

∫ ∞

x̄

ds

s2(s − X̄0)3/2

= x̄ +
3A

2X̄
5/2
0

x̄

[
3

2

{
tan−1

(√
x̄ − X̄0

X̄0

)
− π

2

}
+

X̄
3/2
0 (x̄ − X̄0)

1/2

2x̄2
+

√
X̄0

x̄ − X̄0

]
. (33)
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We can see from this that

Ȳ ∼ 3A

2X̄0

(x̄ − X̄0)
−1/2 as x̄ → X̄0. (34)

This singularity indicates that we need to scale into an inner region where the distance
of the free surface from the y-axis is asymptotically larger than in the outer region,
and surface tension is active at leading order.

2.1.2. Inner problem

Appropriate scaled variables for the inner region are

x − ε−2/9X̄0 − ε4/9X̃0 = ε4/9x̃, y = ε4/9ỹ, X − ε−2/9X̄0 − ε4/9X̃0 = ε4/9X̃,

Y = ε4/9Ỹ , s = ε4/9s̃, φ = ε2/9φ̃, Φ = ε2/9Φ̃, Φn = ε−2/9Φ̃n.

}
(35)

The free surface meets the x-axis at x = ε−2/9X̄0 + ε4/9X̃0 + o(ε4/9). The constant X̃0 is
determined by the solution at higher order, and we will not consider it further here.
At leading order for ε � 1, (17) to (22) become

∇2φ̃ = 0 for ỹ > Ỹ , x̃ > 0 and for ỹ > 0, x̃ < 0, (36)

X̃′2 + Ỹ ′2 = 1, (37)

− 2
9
X̄2

0Ỹ
′2 − 2

3
X̄0X̃

′Φ̃ ′ + 1
2
(Φ̃ ′)2 = −Ỹ ′′X̃′ + X̃′′Ỹ ′, (38)

Φ̃n = −Ỹ ′φ̃x̃ + X̃′φ̃ỹ = − 2
3
X̄0Ỹ

′, (39)

Ỹ ′(0) = 1, X̃′(0) = 0, (40)

φ̃ỹ(x̃, 0) = 0 for x̃ < 0. (41)

Matching with the outer solution gives the far-field conditions

Ỹ ∼ A

X̄0X̃1/2
as s̃ → ∞, (42)

φ̃ ∼ A
sin 1

2
θ

r̃1/2
as r̃ → ∞, (43)

where (r̃ , θ) are polar coordinates centred at the origin of the inner region.
After making use of (37), we note that (38) and (39) can be written as

1
2

(
Φ̃ ′ − 2

3
X̄0X̃

′)2 − 2
9
X̄2

0 = −Ỹ ′′X̃′ + X̃′′Ỹ ′, −Ỹ ′(φ̃ − 2
3
X̄0x̃

)
x̃
+ X̃′φ̃ỹ = 0.

This suggests the change of variables

x̃ = X̄−2
0 x̂, ỹ = X̄−2

0 ŷ, X̃ = X̄−2
0 X̂, Ỹ = X̄−2

0 Ŷ ,

s̃ = X̄−2
0 ŝ, φ̃ = 2

3
X̄0x̃ + X̄−1

0 φ̂, Φ̃ = 2
3
X̄0X̃ + X̄−1

0 Φ̂, Φ̃n = X̄0Φ̂n,

}
(44)

in terms of which the problem becomes

∇2φ̂ = 0 for ŷ > Ŷ , x̂ > 0 and for ŷ > 0, x̂ < 0, (45)

X̂′2 + Ŷ ′2 = 1, (46)
1
2
(Φ̂ ′)2 − 2

9
= −Ŷ ′′X̂′ + X̂′′Ŷ ′, (47)

Φ̂n = −Ŷ ′φ̂x̂ + X̂′φ̂ŷ = 0, (48)

Ŷ ′(0) = 1, X̂′(0) = 0, (49)

φ̂ŷ(x̂, 0) = 0 for x̂ < 0, (50)
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Ŷ ∼ AX̄2
0

X̄0X̂1/2
as ŝ → ∞, (51)

φ̂ ∼ − 2
3
x̂ + AX̄2

0

sin 1
2
θ

r̂1/2
as r̂ → ∞. (52)

In this manner, we have transformed the inner problem into that of steady flow around
a region of constant pressure, with a uniform velocity in the negative x-direction of
size 2

3
in the far field. This problem can be reformulated as an integral equation using

a complex variable method, as used by Crapper (1957) to find an analytical solution
for capillary waves.

We write the complex potential as w = φ + iψ , where ψ is the stream function,
dropping the hats on the variables for the moment. Since φ and ψ satisfy the Cauchy–
Riemann equations, w is an analytic function of z = x + iy provided w is sufficiently
smooth. In addition,

dw

dz
= φx + iψx = u − iv ≡ qe−iθ ,

where q is the speed of the fluid and θ the angle the flow makes with the x-axis. We
now write

log

(
dw

dz

)
= log q − iθ ≡ τ − iθ.

Since τ ≡ log q is an analytic function of w = φ + iψ , except at stagnation points, τ

is a harmonic function of φ and ψ . We note that

κ ≡ −θs = −qθφ = −qτψ,

which allows us to write the boundary value problem (45) to (52) as

τφφ + τψψ = 0 for ψ > 0, −∞ < φ < ∞, (53)

subject to

τψ =

{
0 on ψ = 0 for φ > 0,
2
9
e−τ − 1

2
eτ on ψ = 0 for φ < 0,

(54)

τ → log

(
2

3

)
as φ2 + ψ2 → ∞. (55)

The simple redefinition τ = log(2/3) + τ̂ gives the more useful form

τ̂φφ + τ̂ψψ = 0 for ψ > 0, −∞ < φ < ∞, (56)

subject to

τ̂ψ =

{
0 on ψ = 0 for φ > 0,
− 2

3
sinh τ̂ on ψ = 0 for φ < 0,

(57)

τ̂ → 0 as φ2 + ψ2 → ∞. (58)

Finally, since we know that there must be a stagnation point where the free surface
meets the x-axis, we must also enforce

τ̂ ∼ 1
2
log |φ| as φ → 0 on ψ = 0. (59)

We can reformulate this as the single integral equation,

τ̂ (φ, 0) = 1
2
log |φ| − 2

3π

∫ 0

−∞
sinh τ̂ (ξ, 0) log |ξ − φ| dξ. (60)
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We have thereby reduced the free boundary problem that we started with to a
nonlinear integral equation. It is straightforward to discretize this equation, using the
trapezium rule to evaluate the integral after subtracting out the integrable singularities
in the integrand at ξ = 0 and ξ = φ. However, we have been unable to compute a
solution of (60), despite trying a variety of continuation methods and different ways
of approximating the integral. Although we do not have a rigorous proof that (60)
has no solution, the results that we present in the next section show that there is a
good reason to expect that no solution exists.

2.2. Numerical solution

Having failed to find a solution for ε � 1, we can investigate the reasons for this by
solving the full problem, (17) to (23), numerically. It is convenient to use a boundary
integral formulation of the problem. Specifically, we can replace (17) and (20) with

Φ(s0) =
1

π

∫ ∞

−∞

[
2
3
{n(s) · R(s)} log r +

n(s) · {R(s0) − R(s)}
r2

Φ(s)

]
ds, (61)

where r = |R(s) − R(s0)| and n(s) = (−Y ′(s), X′(s)). We can also use the symmetry of
the solution about the x-axis to reduce the domain of integration to s � 0, with

Φ(s0) =
1

π

∫ ∞

0

[
2
3

{n(s) · R(s)} log r +
n(s) · {R(s0) − R(s)}

r2
Φ(s)

+ 2
3

{n−(s) · R(s)} log r− +
n−(s) · {R(s0) − R−(s)}

r2
−

Φ(s)

]
ds, (62)

where R−(s) = (X(s), −Y (s)), r− = |R−(s) − R(s0)| and n−(s) = (−Y ′(s), −X′(s)).
We truncate the free surface at s = sN and represent it using N points, not necessarily

equally spaced, at which s = si � 0 for i =1, 2, . . . , N , with s1 = 0. This divides the
surface into N − 1 elements, each with arclength si = si+1 − si . At these points, we
define the 3N unknowns Xi = X(si), Yi = Y (si) and Φi = Φ(si).

We evaluate (18) at the midpoint of each element, s = si+
1
2
si for i =1, 2, . . . , N−1,

approximating the first derivatives using central differences. We evaluate (19) at the
points s = si for i =1, 2, . . . , N − 1, using a four-point formula to evaluate the first
derivatives, and a central three-point formula to evaluate the second derivatives. We
found that using a three-point formula for the first derivative (central differences on
a uniformly spaced grid), leads to grid-scale oscillations in Φ .

We solve the boundary integral equation, (62), by collocating at the midpoint of
each element; in other words, we choose s0 = si +

1
2
si for i = 1, 2, . . . N − 1. When

solving (62), we assume that X, Y and Φ vary linearly along each element. This
allows us to evaluate the integral on each element analytically. The advantages of this
approach are firstly that we do not need to worry about the logarithmic singularity
in the integrand, and secondly that, when the free surface approaches the x-axis and
becomes close to its image in the x-axis, we maintain accuracy as r− in (62) becomes
small. This provides us with 3N − 3 equations. The remaining three equations are
provided by the boundary conditions,

Y1 = 0, YN cos α = XN sin α, ΦN = 0. (63)

Recall that ε = tanα. Note that we do not need to impose the symmetry conditions
X′(0) = Φ ′(0) = 0, since these are implicit in (62).

We solve the system of 3N nonlinear algebraic equations provided by this dis-
cretization using Newton’s method and continuation. We start with α close to 90◦,
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Figure 2. The solution for various α � 5◦.

with Xi = Φi = 0 and Yi = si , the solution when α =90◦, as the initial guess. We then
decrease α and use the solution calculated previously as our initial guess. The major
bottleneck in this method is the calculation of the Jacobian, which we perform using
finite differences. We therefore reuse the Jacobian at each step of the Newton iteration,
and for successive values of α, until progress slows to an unacceptable rate, when we
recalculate the Jacobian using the current solution.

Figure 2 shows the shape of the free surface for various values of α � 5◦. Figure 3
shows the shape of the free surface for smaller values of α. In each case, we used
a uniform grid, with sN = 12 and N = 600. Tests with different values of N and sN

confirmed that these solutions have converged. We can see that, as α decreases,
capillary waves of increasing amplitude form on the free surface. The amplitude of
these waves becomes large enough that, at a finite value of α = α0 ≈ 2.87◦, the free
surface touches itself on the axis of symmetry. This result was first reported by Keller,
Milewski & Vanden-Broeck (2000). It is now clear why we were unable to find a
solution of the nonlinear integral equation (60), which represents the inner solution
in the limit α → 0, since the solution only exists for a finite range of values of α > α0.

2.3. The effect of a low-density interior fluid

The results of the previous section suggest that, for α � α0, the free surface may not
be simply connected. When there is no fluid inside the slender wedge (ρ ≡ ρ2/ρ1 = 0)
there is nothing to rule out this situation. In contrast, if there is a fluid inside the
wedge, however small its density, the free surface must be simply connected. If a
disconnected region of the interior fluid existed, since lengths scale with t2/3, its area
would grow like t4/3. Since there are no sources of the fluid, this is not possible. This
means that the limit ρ � 1 is a singular perturbation, since solutions with ρ = 0 may
be qualitatively different from solutions with 0<ρ � 1. This leads us to consider what
happens to the solution when a low-density fluid exists inside the slender wedge; the
double limit, ε � 1, ρ � 1.
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Figure 3. The solution for various α � 4◦.

The outer solution described in § 2.1.1 is unaffected by the inclusion of an interior
fluid of low density. It is straightforward to solve for the flow of the low-density fluid,
which is one-dimensional at leading order, but we will not give the details here.

As we shall see below, the inner solution described in § 2.1.2 is affected. An
appropriate scaling for the potential inside the wedge, φ2 is

φ2 = ε−4/9c + 2
3
ε2/9X̄−1

0 x̂ + ε8/9X̄−1
0 φ̂2, (64)

where c is a constant. The first two terms of this expression come from matching with
the outer solution. At leading order, we find that

∇2φ̂2 = 0 in D2, (65)

subject to

Φ̂2n ≡ −Ŷ ′ ∂φ̂2

∂x̂
+ X̂′ ∂φ̂2

∂ŷ
= 2

3
X̄−3

0 (−Ŷ ′X̂ + X̂′Ŷ ) = 2
3
X̄−3

0 n̂ · R̂ on ∂D. (66)

These are the governing equations for potential flow in D2 with a flux through
the boundary given by (66). The position of the boundary, and hence this flux, is
determined by the solution of the problem for φ̂1, which is slightly different to that
discussed in § 2.1.2. The Bernoulli condition, (47), becomes

1
2
(Φ̂ ′

1)
2 − 2

9
− 1

2
ρε4/3(Φ̂ ′

2)
2 + O(ρ) = −Ŷ ′′X̂′ + X̂′′Ŷ ′. (67)

We have retained just one additional term relating to the flow inside the wedge, which
we shall see becomes important in an inner-inner region.

Let us now assume that a narrow neck, with width δ, forms at x̂ = X̂1 in the interior
fluid as ε → 0, as sketched in figure 4. This neck divides D2 into the areas D− and
D+. On the line L0, which crosses the neck, ∂φ̂2/∂n ≈ δΦ̂ ′

2, whilst on the rest of the
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Figure 4. The neck in D2, the regions D± and the line L0.

boundary of D−, ∂φ̂2/∂n is given by (66). This means that Φ̂ ′
2 = O(δ−1) for δ � 1. We

therefore expect that when δ =O(ρ1/2ε2/3), the flow of the interior fluid will start to
affect the shape of the free surface, as determined by the inner solution, through (67).
This is just the Bernoulli effect, which operates when the neck is narrow enough that
the flow of the light interior fluid is sufficiently rapid that it significantly affects the
pressure there, and hence the shape of the free surface. However, we will concen-
trate on what happens when δ =O(ρε4/3), and the flow of the interior fluid dominates
the behaviour of the free surface at the neck, since we can then solve for the flow in the
neck without solving the inner problem.

2.3.1. Inner-inner, or neck, problem

We define the inner-inner variables to be

x̂ = X̂1 + ρε4/3¯̂x, ŷ = ρε4/3 ¯̂y, ŝ = ρε4/3¯̂s,

X̂ = X̂1 + ρε4/3 ¯̂
X, Ŷ = ρε4/3 ¯̂

Y , φ̂2 =
¯̂
φ.

}
(68)

At leading order in terms of these new variables, we obtain

∇2 ¯̂
φ = 0 for ¯̂y <

¯̂
Y , (69)

subject to

∂
¯̂
φ

∂n
= 0 on ¯̂y =

¯̂
Y , (70)

∂
¯̂
φ

∂ ¯̂y
= 0 on ¯̂y = 0, (71)

¯̂κ = − 1
2
(
¯̂
Φ ′)2 on ¯̂y =

¯̂
Y . (72)

In order to obtain the matching conditions with the inner problem, we note that the
inner flow will see the neck region as a point, and therefore that the flow out of D−
must exit through a point source at the neck. We can obtain the total flow out of D− by
integrating (67) over the boundary, which gives a value of − 4

3
X̄−3

0 D̄−, where D̄− is the
area of D−. In other words, the flow is actually directed into D− through the neck. If
we assume that

¯̂
Y ∼ − tan β

¯̂
X as

¯̂
X → −∞, (73)

¯̂
Y ∼ tan γ

¯̂
X as

¯̂
X → ∞, (74)
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we deduce that

¯̂
φ ∼ K

β
log ¯̂r as r̂ → ∞ with 1

2
π − β � θ � 1

2
π, (75)

¯̂
φ ∼ −K

γ
log ¯̂r as r̂ → ∞ with 0 � θ � γ , (76)

where (¯̂r, θ) are polar coordinates and K = 2
3
X̄−3

0 D̄−.
We can now solve this problem using the complex variable method described in

§ 2.1.2. For this problem, we find that τ ≡ log q satisfies

τφφ + τψψ = 0 for 0 < ψ < K , −∞ < φ < ∞, (77)

subject to

τψ =

{
0 on ψ = K for −∞ < φ < ∞,
1
2
eτ on ψ = 0 for −∞ < φ < ∞,

(78)

τ ∼




− β

K
φ + log

(
K

β

)
as φ → ∞,

γ

K
φ + log

(
K

γ

)
as φ → −∞.

(79)

We can conformally map this problem in a strip onto an upper half-plane using
W = eπw/K . After also making the definition

τ = −β

π
log r + log

(
K

β

)
+ τ̄ ,

we obtain

τ̄ΦΦ + τ̄Ψ Ψ = 0 for Ψ > 0, −∞ < Φ < ∞, (80)

subject to

τ̂Ψ =




0 on Ψ = 0 for Φ < 0,

− K2

2πβ
Φ−(1+β/π)eτ̄ on Ψ = 0 for Φ > 0,

(81)

τ̄ → 0 as Φ2 + Ψ 2 → ∞, (82)

where W = Φ + iΨ . We are also left with a singularity at the origin, with

τ̄ ∼ γ + β

π
log |Φ| + log

(
β

γ

)
as Φ → 0 on Ψ = 0. (83)

We can reformulate this as the single integral equation

τ̄ (Φ, 0) =
γ + β

π
log |Φ| − K2

2π2β

∫ ∞

0

ξ−(1+β/π) exp{τ̄ (ξ, 0)} log |ξ − Φ| dξ, (84)

but note that we must still satisfy (83), since this tells us two terms in the local
expansion of τ̄ . We also note that the solvability condition for the Neumann boundary
value problem is

γ + β

π
=

K2

2π2β

∫ ∞

0

ξ−(1+β/π) exp{τ̄ (ξ, 0)} dξ, (85)
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and that, after taking the small-Φ limit of (84), (83) shows that

log

(
β

γ

)
= − K2

2π2β

∫ ∞

0

ξ−(1+β/π) exp{τ̄ (ξ, 0)} log ξ dξ. (86)

In order to rewrite (83) and (84) in a form more suitable for numerical solution,
we define

Φ =

(
K2

2π2β

)π/β

Φ̄, ξ =

(
K2

2π2β

)π/β

ξ̄ ,

which, after making use of the solvability condition, eliminates K from the integral
equation, giving

τ̄ (Φ̄, 0) =
γ + β

π
log |Φ̄| −

∫ ∞

0

ξ̄−(1+β/π) exp{τ̄ (ξ̄ , 0)} log |ξ̄ − Φ̄| dξ̄ . (87)

Similarly, (85) and (86) become

γ + β

π
=

∫ ∞

0

ξ̄−(1+β/π) exp{τ̄ (ξ̄ , 0)} dξ̄ , (88)

log

(
β

γ

)
+

γ + β

β
log

(
K2

2π2β

)
= −

∫ ∞

0

ξ̄−(1+β/π) exp{τ̄ (ξ̄ , 0)} log ξ̄ dξ̄ . (89)

Finally, we subtract log |Φ̄| times (88) from (87) to obtain

τ̄ (Φ̄, 0) = −
∫ ∞

0

ξ̄−(1+β/π) exp{τ̄ (ξ̄ , 0)} log

∣∣∣∣1 − ξ̄

Φ̄

∣∣∣∣ dξ̄ . (90)

For a given value of β , we solve (90) numerically, evaluating the integral using the
trapezium rule, after subtracting out the integrable singularities at ξ̄ = 0 and ξ̄ = Φ̄ .
Knowing τ̄ , we can then obtain the corresponding value of γ from (88) and K from
(89). In this way, we can determine how β and γ vary with K , which is half the flux
through the neck.

For Φ̄ � 1, τ̄ = O(Φ̄−β/π). This means that we need a very long range of integration
to be able to capture the behaviour of τ̄ , particularly when β is small. In order
to accommodate this, we discretized τ̄ on a logarithmically spaced grid of 3000
points, truncating the domain at a value of ξ̄ = ξ̄N large enough that τ̄ (ξ̄N ) < 10−8.
Figure 5 shows the solution when β = π/4, which we can see is in good agreement
with the known large- and small-ξ̄ behaviour, although we note that τ̄ deviates from
the expected behaviour close to the end of the truncated domain, where it is very
small. As we might expect from the symmetry of the problem, we find that β = γ

to numerical accuracy, and that these angles vary with K in the manner shown in
figure 6. The larger K , the larger the flux through the neck, and the larger the angles
β and γ .

2.3.2. Inner problem

On the inner length scale, the neck, or inner-inner, region is a point. We must
therefore solve the same boundary value problem that we obtained at leading order
when ρ = 0, (45) to (52), but now with the added condition that the free surface
touches the x̂-axis at some point x̂ = X̂1. The neck solution also shows that the free
surface makes the same angle, β(K), with the x̂-axis on either side of this point.
We can still reformulate the problem in terms of the complex velocity, as we did in
§ 2.1.2, but now we have another stagnation point on the x̂-axis. This means that (60)
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becomes

τ̂ (φ, 0) =
1

2
log |φ| +

2β

π
log |φ − φ1| − 2

3π

∫ 0

−∞
sinh τ̂ (ξ, 0) log |ξ − φ| dξ, (91)

where φ1 is the unknown potential at the neck. The condition that the free surface
touches the x̂-axis is∫ φ1

0

exp{−τ̂ (ξ, 0)} cos

{∫ ξ

0

2
3
sinh τ̂ (φ′, 0) dφ′

}
dξ = 0. (92)
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Figure 7. The solution for various α � 5◦ with ρ = 0.01.

The condition that the free surface touches the x̂-axis symmetrically is∫ φ1

0

2
3
sinh τ̂ (ξ, 0) dξ = 1

2
π + β. (93)

We can now attempt to solve (91) as we did before, using the trapezium rule, taking
into account the integrable singularities of the integrand. Equations (92) and (93)
can be treated in the same manner. In principle, we need to solve (91), with the
eigenvalues φ1 and β determined by the conditions (92) and (93). If we recall that
K = 2

3
X̄−3

0 D̄−, once we have a solution we can calculate the area of D−, D̄−, and
also the value of K that corresponds to β(K), and hence determine X̄0. However,
even with this modification to the problem, we have been unable to find a solution,
although we do not have a proof that no solution exists.

Physically, it is clear why adding the Bernoulli effect has not enabled us to find
a solution. The pressure induced by the rapid flow of the interior, low-density fluid
through the narrow neck region exerts a force on the exterior fluid directed towards
the neck; a suction force. This should cause the free surface to pinch off at larger
wedge angles than if the interior fluid were absent. We will now investigate this
further by considering the numerical solution of the two-fluid problem.

2.3.3. Numerical solution

In order to solve the two-fluid boundary value problem, (11) to (16), we can, as
for the single-fluid problem described in § 2.2, use the boundary integral method. The
boundary integral equation satisfied by Φ2(s), the boundary value of φ2, is also given
by (62), but with the direction of n reversed. We discretize Φ2 at the midpoint of each
element, and calculate Φ ′

2 using central differences. Otherwise, the solution proceeds
as before. When ρ = 0.01, the results corresponding to those shown in figure 2 are
almost identical, since a well-defined neck region has yet to form. Figure 7 shows
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Figure 9. The minimum width of the neck for various values of the density ratio, ρ.

the solution as α decreases towards the angle at which the free surface meets the
x-axis. Of course, we cannot compute all the way up to the touching angle as
we could for the case ρ =0, since Φ ′

2 becomes unbounded at this angle. We were un-
able to compute beyond α = α0 ≈ 3.00◦, at which point the curvature of the free surface,
shown in figure 8, is large and rises rapidly at the neck, s ≈ 1.5, as we would expect.

It is also of interest to investigate how α0, the minimum value of α for which a
similarity solution exists, varies with the density ratio, ρ. Figure 9 shows how the
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minimum width of the neck varies for several values of ρ. We are not currently able
to obtain an accurate solution as α approaches α0, since the high curvature at the
neck is poorly resolved. However, figure 9 suggests that when ρ < ρ0 there is only a
solution for α > α0(ρ), whilst for ρ > ρ0, there is a similarity solution for all α > 0. It
is, however, rather difficult to determine the values of ρ0 and α0(ρ) using our current
numerical method. We plan to resolve this issue in the future using an adaptive
numerical method, but this is beyond the scope of the present paper. Figure 10 shows
how the qualitative form of the solution varies with ρ with α fixed at 4.5◦. Note
that it is convenient to compute solutions with α close to 180◦ and ρ = 0 to illustrate
the solution when the inner fluid is denser than the outer fluid. We are currently
investigating the form of the asymptotic solution when ρ = O(1) and α � 1.

Within the framework of inviscid flow, we conclude that the free surface touches
itself on the x-axis at some small finite value of α. If we were to reintroduce the
effect of viscosity in the interior fluid at the neck, it is likely that we would be able to
construct a solution where the free surface does not touch the x-axis for any α > 0,
since it takes an infinite time for a viscous lubrication film to thin to zero. However,
this type of solution would only be available as an asymptotic solution for t � 1. In
addition, the asymptotic scalings would depend explicitly on t , not just through the
similarity variables (9). Moreover, it is likely that lateral instabilities would cause the
thin film to rupture at some point. We prefer to continue to investigate this problem
for purely inviscid flow.

3. Unsteady solutions
Having now established that, below some critical initial wedge semi-angle, α = α0,

for sufficiently small density ratio ρ, the boundary value problem (11) to (16) has no
solution, we need to take a step back and consider the original initial value problem,
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(1) to (8). Although we have ruled out the idea of including the effect of viscosity in
the thin film at the neck, it seems that we need to invoke viscosity at small times.
It can be shown that the small-time solution of the equivalent initial value problem
when viscosity is included is dominated by viscous forces, and that the free surface
is monotonic and simply connected (Billingham 2005). Since the inviscid similarity
solution is the natural large-time asymptotic solution of this initial value probem,
we hypothesize that, for α > α0, the solution of the viscous initial value problem
asymptotes to the inviscid similarity solution as t → ∞, although this may not be
uniform in space. This has already been established for |α − π/2| � 1 in Billingham
(1999). For 0 <α � α0, we hypothesize that the free surface pinches off for the first
time at some finite time t1. This process then repeats itself, and the free surface pinches
off at a sequence of times t1, t2, . . . .

Although it is, of course, not unusual to invoke the action of viscosity to regularize
an inviscid problem, we believe that this is quite an unusual example. For α > α0, an
inviscid similarity solution exists, and is physically reasonable, whilst, for α � α0, an
inviscid similarity solution does not exist. However, on invoking the effect of viscosity
to enable the existence of an effective initial condition other than a wedge, we postulate
that a physically reasonable inviscid solution again exists, but is unsteady. Moreover,
viscosity is not needed to regularize the unsteady solution for t > 0; viscosity is only
necessary when t = 0+, to blunt the initial wedge.

We will investigate these hypotheses by solving the single-fluid inviscid initial value
problem, (1) to (8), but replacing the initial condition (7) with

φ ≡ φ1(x, y, 0) = 0 in D1 ≡ D, Y (s, 0) = Yin(s), X(s, 0) = Xin(s). (94)

The initial position of the free surface, (Xin(s), Yin(s)), must satisfy (6) and (8), and
also have the same enclosed area as the original wedge, so that we require∫ ∞

0

{Yin(s) − tan αXin(s)}X′
in(s) ds = 0. (95)

The idea is that this simulates the simply connected free surface shape that emerges
from the period when the effect of viscosity is important, and then develops with
viscosity negligible as t → ∞.

3.1. Numerical solution

In order to solve this problem numerically, it is convenient to make the similarity
transformation (9), but retain the time dependence of the variables. In this way, we
solve the full, time-dependent inviscid problem, but in a frame of reference that grows
like t2/3. In this manner, we can keep the solution, which is, of course, always recoiling
under the action of surface tension (there is no steady solution in terms of the original,
physical variables), within our computational domain. We also define τ = log t , since
this removes any explicit time dependence from the governing equations, and leaves
us with an unsteady version of (17) to (23), namely

∇2φ = 0 in D, (96)

dΦ

dτ
= Y ′′X′ − X′′Y ′ − 1

3
Φ + 2

3
R · ∇φ − 1

2
|∇φ|2 +

(
n · ∇φ − 2

3
n · R

)
n · ∇φ, (97)

dR
dτ

=
(
n · ∇φ − 2

3
n · R

)
n, (98)

φy(x, 0) = 0 for x < X0. (99)
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We discretize the free surface at a set of Lagrangian points Ri(τ ) = (Xi(τ ), Yi(τ )), at
which we also calculate the potential, Φi(t) = φ(Ri(t)). We solve (97) and (98) using
the Crank–Nicolson method, calculating n · ∇φ at the free surface using the boundary
integral equation (62), as described in § 2.2. However, for this unsteady calculation we
use cubic splines to calculate the curvature of the free surface and the direction of the
normal, n. For consistency with the discretization we used for the steady problem, we
use 600 points for 0 � s � 12, and then extend the free surface with a further 150 grid
points with gradually increasing spacing, up to s = 1000. We found that we needed to
take this large domain in order to maintain numerical accuracy and stability. After
each time step, we regrid the surface using the cubic spline approximation, in order
to maintain the initial spacing.

In order to suppress the short-wavelength instability that develops in this, and some
other, simulations of invisicid free surface flows, as first noted by Longuet-Higgins &
Cokelet (1976), we modify (98) to include a fourth-order diffusive term with small
coefficient, which suppresses this instability (see Lundgren & Mansour 1988). We
solved

dR
dτ

=
(
n · ∇φ − 2

3
n · R

)
n − ε ′ ∂

4 R
∂s4

, (100)

with ε ′ = 10−5. Numerical experiments confirmed that, prior to the appearance of the
instability, the solutions with ε ′ = 0 and ε ′ = 10−5 were indistinguishable.

Before we can compute some solutions, we need to specify the initial conditions,
(94). We use a semicircular nose joined to a free surface profile that decays like x−2

to the linear far-field behaviour, given by

Yin =




√
R2 − (Xin − xc)2 for xc − R � Xin � xc,

εXin{1 − exp(−k(Xin − xc)
2)} +

R

1 + (Xin − xc)2
for Xin � xc,

Xin = s. (101)

We choose k and l so that the curvature is continuous at x = xc and the area constraint
(95) is satisfied. Figure 11 shows how this initial profile evolves when α = 4◦, with
xc = 3.6, R = 0.5, which gives k ≈ 5.65 and l ≈ 4.85. As τ → ∞, the solution asymptotes
to the similarity solution, which is steady in terms of these coordinates. This, and other
simulations for various wedge semi-angles with α > α0, suggests that the similarity
solution is an attractor for the unsteady inviscid problem, provided that the initial
conditions satisfy (6), (8) and (95), so that the similarity solution is the large-time
solution of the problem that emerges from the initial viscous-dominated flow, and
not just for the initial inviscid wedge configuration. In each case, the steady state to
which the solution asymptotes is in reasonable agreement with the steady solutions
calculated using a slightly different numerical method in § 2.2.

Figures 12 and 13 show how the free surface develops for α =1◦, with xc =6.5,
R = 0.4, which gives k ≈ 6.08 and l ≈ 4.85. We can see that the free surface develops
a shape dominated by a large-amplitude capillary wave, which looks very similar
to the shapes with α close to α0 shown in figure 3. However, as predicted, the free
surface meets the x-axis at a finite value of τ . In the present paper, we have not
tried to perform surgery on the free surface and calculate its subsequent motion. This
is a difficult task numerically, as the motion after surgery is initially dominated by
the high curvature at the point of pinch-off, which leads to very violent motion. A
similar flow was calculated numerically by Duchemin et al. (2003), a paper to which
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Figure 11. The unsteady solution with α = 4◦ and initial condition given by (101).

we shall return later. These authors were able to proceed past pinch-off by discarding
the enclosed bubble and resetting φ to zero, effectively starting the fluid from rest.

Figure 14 shows how the free surface develops for α = 0.1◦, with xc = 21.4, R = 0.4,
which gives k ≈ 19.91 and l ≈ 4.98. Here, although the free surface develops a large-
amplitude capillary wave, pinch-off occurs further from the tip than in the previous
case. The point of pinch-off is clearly rather sensitive to the precise form of the initial
conditions. We will not pursue this further, since the initial conditions that we have
used are simply plausible guesses.

We now need to draw a distinction between the cases ρ =0 and 0< ρ � 1. Firstly,
we consider the behaviour close to pinch-off. We have seen above that the interfaces
meet in a cusp when ρ =0. When 0< ρ � 1, for which we have not computed an
unsteady solution, we would expect, as discussed in § 2.3, that the rapid flow of the
interior low-density fluid through the neck region would suck the free surface together,
leading to an outer region where the free surface appears to meet the x-axis at some
finite angle β . In fact, the analysis that we gave in § 2.3.1 for the inner-inner, or neck,
region remains valid as pinch-off approaches in the unsteady problem. The time-
derivative term in the Bernoulli equation does not appear at leading order in the neck
region, and the relationship between β and K shown in figure 6 remains valid with K
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Figure 12. The unsteady solution with α = 1◦ and initial condition given by (101):
initial development.

equal to half of the flux through the neck. Secondly, we consider the behaviour after
pinch-off. When ρ = 0, there is no constraint on the area of the pinched-off bubble,
and we cannot say anything about its subsequent behaviour without computing the
solution beyond the pinch-off time. However, as we discussed earlier, this is a singular
perturbation. When 0 <ρ � 1, there is a fluid within the pinched-off bubble, and its
physical area must remain constant. Since we are working in a frame of reference
where lengths scale with t2/3, the area of the bubble must shrink like t−4/3 = e−4τ/3 in
order to remain constant in the original frame of reference. By conservation of mass,
as τ increases, the area enclosed by the rest of the free surface must increase and
approach its original value. The dynamics of this connected part of the free surface
then drives it towards a large-amplitude capillary wave, and pinch-off occurs again.
In this way, we can see that the solution is unsteady, with a sequence of pinch-offs
and, in this frame of reference, shrinking bubbles.

3.2. Unsteady asymptotic solution for ε � 1

We can now try to construct an asymptotic solution of the unsteady problem valid
in the slender wedge limit. We find that we can use the original outer scalings (24).
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Figure 13. The unsteady solution with α = 1◦ and initial condition given by (101): pinch off.

In the outer region, (27) and (28) become at leading order

dΦ̄

dτ
= − 1

3
Φ̄ + 2

3
x̄Φ̄ ′, (102)

dȲ

dτ
= φ̄ȳ(x̄, 0) − 2

3
(Ȳ − x̄Ȳ ′). (103)

We will not attempt to solve these equations here, although it is possible to do so in
principle, but note that now the position of the inner region is time-dependent, with
X̄0(τ ) depending on the matching between the inner and outer regions.

In the inner region, we can use the scalings (45), (47) and (48). However, in order
that the time-derivatives appear in the inner equations at leading order, we must
define a new, fast time variable, τ̂ = ε−2/3X̄3

0(τ )τ , in terms of which, at leading order

∇2φ̂ = 0 for ŷ > Ŷ , x̂ > 0 and for ŷ > 0, x̂ < 0, (104)

φ̂ ∼ − 2
3
x̂ as x̂2 + ŷ2 → ∞. (105)

dΦ̂

dτ̂
= − 1

2
|∇φ̂|2 + 2

9
+ Ŷ ′′X̂′ − X̂′′Ŷ ′, (106)

dR̂
dτ̂

= (n · ∇φ̂)n, (107)
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Figure 14. The unsteady solution with α =0.1◦ and initial condition given by (101).

subject to

φ̂ ∼ − 2
3
x̂ as x̂2 + ŷ2 → ∞. (108)

The inner solution develops on this τ = O(ε2/3) timescale, whilst the outer solution,
and hence X̄0, develops on a slower, τ = O(1) timescale, so that X̄0 is constant as far
as the inner solution is concerned. After all of the scalings of the original variables,
this inner problem is simply the flow of a uniform stream of speed 2

3
in the negative

x̂-direction around a region of constant pressure. After subtracting out the flow at
infinity, we can solve this problem numerically using the method described in § 3.1.

Before we discuss these solutions, we note that, in this unsteady case, the scalings
that we have used for the inner and outer regions are no longer uniquely determined.
Since the outer flow develops on a longer timescale than the inner flow, we find that
we can reproduce the leading-order inner and outer problems using the more general
inner scalings

x = ε−b/3X̄0 + ε2b/3X̃0 + ε2b/3x̃, y = ε2b/3ỹ, X = ε−b/3X̄0 + ε2b/3X̃0 + ε2b/3X̃,

Y = ε2b/3Ỹ , s = ε2b/3s̃, φ = εb/3φ̃, Φ = εb/3Φ̃, Φn = ε−b/3Φ̃n, τ = εbτ̃ ,

}
(109)

with b a strictly positive constant. The scalings (35) have b = 2/3. The outer scalings
consistent with this that satisfy Y − εX → 0 as s → ∞ are

x = ε−b/3x̄, y = ε−b/3ȳ, X = ε−b/3X̄, Y = ε1−b/3Ȳ ,

s = ε−b/3s̄ Φ = ε1−2b/3Φ̄, Φn = ε1−b/3Φ̄n.

}
(110)
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Note that, if Ŷ = O(x̂−n) as x̂ → ∞, then matching between the inner and outer regions
demands that Ȳ = O((x̄ − X̄0)

−n) as x̄ → X̄0. For this procedure to be consistent, we
need

n =
1

b
− 1, (111)

a condition that will prove to be important in § 4.
Figure 15 shows the numerical solution of the inner problem with

Ŷ in =




√
R2 − X̂2

in for −R � X̂in � 0,

R

1 + lX̂2
in

for X̂in � 0,
(112)

X̂in = s,

and R = 1 and l = 1/2/R2. We have subtracted out the part of the initial condition
(101) that gives linear growth at infinity, and chosen l so that the curvature is
continuous at x̂ = 0. A simple order-of-magnitude estimate shows that the enclosed
area in the inner region is of O(ε4b/3), whilst the excess area over the original wedge
configuration in the outer region is of O(ε1−2b/3). Provided b > 1

2
, the area enclosed by

the inner region is small relative to the excess area in the outer region, and the initial
area can be taken to be arbitrary. This is the case here, where we have taken b = 2/3.
It is clear from figure 15 that the behaviour of the solution is qualitatively the same
as that shown in figure 14, with pinch-off at a finite time in an initially narrow part
of the interior fluid.

Figures 16 and 17 show the numerical solution of the inner problem with

Ŷ in =




√
R2 − X̂2

in for −R � X̂in � 0,{
R −

(
1

2R
− R

)
x2

}
e−x2

+
x3

2
(
1 + x7/2

) for X̂in � 0,
(113)

X̂in = s,

and R = 0.5. This initial condition has an interior region of sufficient width that a
large-amplitude capilary wave develops and pinch-off occurs close to the tip. This
solution should be compared with figures 12 and 13.

One feature that is obvious from a comparison of the unsteady inner solutions
and the full unsteady solutions is that the inner region travels to the left in the full
solution. This is because X̄0 ≡ X̄0(τ ) in the asymptotic formulation. In other words,
X̄0, the position of the inner region relative to the origin, as defined by (35) is fixed
by matching with the outer solution, which varies on an O(1) timescale, whilst the
flow in the inner region varies on an O(εb) timescale.

4. The inviscid coalescence of drops
Duchemin et al. (2003, henceforth referred to as DEJ), studied the motion of two

spheres or cylinders of fluid, brought together with negligible velocity; a sintering
problem. They argued that viscous forces are dominant at very small times, but that
the later evolution is essentially inviscid. They showed that the coalescence of spheres
is two-dimensional at leading order, and hence equivalent to the coalescence of
cylinders. In order to simulate this process, they took two cylinders of inviscid fluid at
rest, joined by a very small liquid bridge whose formation was assumed to be under
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Figure 15. The unsteady inner solution with initial condition (112).

the control of first intermolecular, and then viscous forces. Indeed the sintering of
two spherical drops by the action of surface diffusion, and at small enough times that
viscosity dominates inertia have also been studied (Eggers 1998; Eggers, Lister &
Stone 1999). This is basically the same argument that we used in the previous section
to justify studying the unsteady problem with non-wedge-shaped initial conditions.
DEJ then studied the subsequent inviscid, irrotational motion of the free surface
using a boundary integral method. DEJ found, as we have, that there is a succession
of pinch-off events during the coalescence process, with the form of the free surface
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Figure 16. The unsteady inner solution with initial condition (113): initial development.

looking strikingly similar to that which we have calculated for the two-dimensional
wedge problem.

DEJ use (r, z) coordinates, in terms of which the initial height of the free surface
above the r-axis, w = z, varies quadratically with r , so that the slope varies linearly
with r . In our notation, ε ∼ r . During any single pinch off in the coalescence problem,
rc, the distance between the initial position of the tip of the free surface, rb, and the
point where the next pinch-off occurs, is small compared to rb, so that, at leading
order, the slope of the free surface, ε, is approximately constant. We can therefore
apply our slender wedge analysis to this problem. This suggests that rc =O(t2/3ε2b/3),
consistent with this assumption, and also that rb = O(t2/3ε−b/3). Since we already have
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Figure 17. The unsteady inner solution with initial condition (113): pinch off.

rb = O(ε), this immediately gives us

rb = O(ε) = O
(
t2/(b+3)

)
, rc = O

(
t2(b+1)/(b+3)

)
. (114)

In order to fix b, we note that, in contrast to the slender wedge problem, the tangent
to the free surface during a pinch-off event in coalescence, which we treat as if it were
a slender wedge, does not pass through the origin. In order to be consistent with this
constant offset, we need Ŷ to tend to a constant as x̂ → ∞, out of the inner region.
Equation (111) shows that, in order for this to match to a sensible outer solution, we
require b =1. The scalings (114) with b = 1 are precisely those found by DEJ.
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DEJ also go on to analyse the scaling laws for the time and distance between
successive pinch-offs. Equation (114) is consistent with their estimate of rc, the
distance between pinch-offs. Fron our analysis, the time between pinch-offs is

τn+1 − τn = O(εb),

and hence

tn+1 − tn = O(εbtn) = O
(
t3(b+1)/(b+3)

)
, (115)

which, again, reproduces DEJ’s result when b = 1. Finally, we have found that pinch-
off occurs for α < α0 ≈ 2.87◦, which is equivalent to ε � ε0 ≈ 0.05. This is precisely the
estimate given by DEJ.

We can also make this argument more formal. If we assume that the initial shape
of the free surface away from the rounded tip is Y = x2/2Rb, where Rb is the radius
of the cylinders, we can use dimensionless variables

r =
x

Rb

, z =
y

Rb

, w =
Y

Rb

, T =
σ 1/2t

ρ1/2R
3/2
b

, (116)

in terms of which the far field becomes w = 1
2
r2. Our earlier arguments show that we

need to look for an inner solution using

T = ε(b+3)/2T̄ , r = T̄ 2/3(εR̄0 + εb+1r̃), w = T̄ 2/3εb+1w̃, τ = log T = εbτ̄ . (117)

In terms of these variables, the matching condition provided by the shape of the free
surface far from the tip is

w̃ ∼ 1
2
T̄ 2/3ε1−bR̄2

0 as r̃ → ∞. (118)

As we would expect in this problem, where there is a lengthscale, Rb, this remains
dependent upon time, T̄ . However, the key point is that, during a pinch-off event, T̄

only changes by an O(εb) amount, as given by (115). This means that we can treat
the right-hand side of (118) as a constant, and therefore that we need b = 1 to obtain
a scaling appropriate to the outer problem.

We have now shown that the similarity between DEJ’s results and those presented
here is no coincidence. The inner problem close to the tip of the free surface is the
same in each case, with the same underlying physics.

5. Conclusions
In this paper, we have shown that, although the problem of inviscid flow outside an

initially wedge-shaped void has an obvious similarity scaling (Keller & Miksis 1983),
no solution exists for sufficiently small wedge angles. The inclusion of an interior
fluid inside the wedge only serves to decrease the range of angles for which a solution
exists. Thus, there is no solution of the initial value problem for an inviscid fluid when
the wedge semi-angle, α, is sufficiently small. The inclusion of the effect of viscosity
at small times regularizes the problem when t = 0+, and leads to a succession of
pinch-off events, where a bubble of the interior fluid is detached when the free surface
touches itself. We showed that asymptotic scalings exist for an inner region where
this pinch-off event occurs, based upon the initial small wedge angle. Physically, the
flow in the inner region is analogous to the pinch off of a constant-pressure region
due to a uniform flow at infinity. Finally, we showed that these scalings are also
consistent with the sequence of pinch offs that occur during the coalescnce of two
inviscid spheres or cylinders, as described by Duchemin et al. (2003).
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There are a number of issues related to this work that remain to be explored. Firstly,
it would be worthwhile extending the unsteady numerical simulations presented here
past the time where pinch-off occurs, both with no interior fluid and with a low-density
interior fluid, to see whether there is a large difference in the dynamics, in particular
the area of the bubble. Secondly, now that we have some idea of how to set up an
inner asymptotic scaling, it should be possible to study the problem of the inviscid
coalescence of two spheres or cylinders with non-zero initial approach velocity. Finally,
the analagous problems of a slender wedge with an exterior void (ρ = 0, π − α � 1)
and a slender wedge with an exterior fluid of comparable density (ρ =O(1), α � 1)
are also of interest, and it should be possible to tackle this using asymptotic methods
analogous to those described by Decent & King (2001). Preliminary numerical results
indicate that, in these cases, the tip of the wedge recoils through a distance of order
t2/3ε−1/3.

J. B. would like to thank the EPSRC for an Advanced Research Fellowship, which
made this work possible. We would also like to thank Jean-Marc Vanden-Broeck for
several helpful discussions.
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